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ABSTRACT 

Temperature distribution and position of freezing interface are determined in present mathematical model 

for cryosurgery of a tumor embedded in a lung by solving unsteady state bio-heat equation analytically 

together with boundary conditions. It is observed that first time depends upon the metabolic heat generation 

as well as on the heat due to local blood flow rate. The freezing interface velocity for both in healthy lung 

tissue and in tumor are calculated from the model and compared with available experimental results in the 
literature.  
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I. INTRODUCTION 

Cryosurgery is an effective technique for the 

treatment of cancerous and non cancerous tumors 
that involves the use of very low temperature to 

destroy abnormal tissue. In order to apply 

cryosurgery more effectively, it is necessary to 
understand the propagation of freezing interface 

into the tissue. Most of the models discussed only 

one single type of tissue but, Comini and Giudice 
[5] considered freezing behavior during 

cryosurgery of Brain Tumor in contact with brain 

and bone tissue. Cooper and Trezek [4] predicted 

the lesion size for spherical and cylindrical 
cannulas in the steady state conditions. The rate of 

growth of the frozen region surrounding a  

cryoprobe was determined experimentally by 
embedding the cryoprobe in a clear gel by Cooper 

and Petrovie [2].  Bischof et al. [1] considered 

tumor /lung configuration for  cryosurgery and  
solved the heat conduction equation under quasi-

steady state conditions for the frozen region only. 

Some thermal properties of human blood during 

the freezing are described by Wessling and 
Blackshear [8]. Yang et al. [9] presented 

numerical method to simulate prostate cryosurgery 

by considering thermal stress aspects. Numerical 
techniques for planning of computerized 

cryosurgery were developed by Rossi et al. [7]. In 

the present paper the temperature distribution and 

position of freezing interface with time are 
obtained by solving bio-heat equations together 

with suitable boundary conditions to predict the 

exact position of frozen tissue of a tumor 

embedded in lung. 

II. MATHEMATICAL MODELLING 

The unsteady state bio-heat equation can be 

written as- 

(��)��
��	

�� =���

��	

�� + �� + ��          (1) 

Where �� and �� denotes the frozen region the 

term e metabolic  heat generation and heat due to 

local blood flow per unit volume. In the  �� and 

��vanish since the heat removed by blood (Sb) is 

equal to magnitude to the metabolic heat 

generation( Sm). 

The macroscopic properties of lung computed by 
using void fractioning volumetric averaging 

techniques (Lunardini, [6]), and are given as 

follows 

         (��)lung =(��)w fw+(��)a fa                  (2) 

           Klung =Kw fw+Ka fa                                            (3) 

And  

              (�)lung =(�)w fw+� (�)a fa              (4) 

The void fractioning technique accounts for the 

insulation air pockets in the alveolus. These air 

pockets decrease the effective density specific 
heat, thermal conductivity and density. This effect 

can be neglected in the ratio for example thermal 

diffusivity etc. The problem is divided in two 
cases: in case I we consider only tumor or lung, 

and in case II the tumor imbedded in the healthy 

lung tissues. 
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Case I: 

Again in this case there are two time domains to 

be considered the time ��
(�)

   before the surface 

temperature reaches the freezing value ���   after 

the insertion of the cryoprobe, during which no 

phase change occurs and the time ��
(�)

 when 

freezing interface reaches to a distance S and 
phase change occurs. The bio-heat equation and 

boundary conditions for the first time period ��
(�)  

in the affected tumor (or lung) regions are, 
��	

�� =��� ��	
�� − ����

 !"(��)! (��� − �#),   0<x<��,
 0<t<��(�)                                              (5) 
  

���(��,�)=�#                                                      (6) 
��	(%!,�)

�� =0            (7) 

��	(#,�)
�� =

�!(#,,�)&�'
(!             (8) 

���()�, �(�)�)=�*�                                              (9) 

���(), 0)=�#                                                    (10) 

and ��(0) = 0           (11) 

where  i=1 for tumor and 2 for lung. 

III. METHOD OF SOLUTION  

Using heat balance integral technique in the 
affected region along with a quadratic temperature 

profile of the form 

Ti2  =ai + bix+ cix
2
                    (12) 

And applying boundary conditions (6) to (11), we 

obtain 

���=�#+
(�'&�-)(�&.!)

.!/�.!(!                       (13) 

��(�)� = &�
0! [ 2(!

(3!&2(!) ln 61 + .!
�(!8 +

6 3!/2(!
�(3!/�(!)8 ln (1 − δ	

9	) +
6 3!/2(!

�(3!&�(!)8 ln (1 + δ	
9	)]                                 (14) 

where  

Ai=
����

 !;((<'))!
, 

Bi==>?!
0!   and 

(�-&�@A)
(�BA&�')=

.!
�(! 

The second time period begins with freezing as the 

first time period  ends. On assuming constant heat 
flux at the inner boundary of interface i.e. the 

boundary inside unfrozen region, the heat 

conduction equation and the boundary conditions 
for the frozen region are  
��	"

�� =��� ��	"
��  ,   0<x<S,   �(�)� < � <  �(�)� (15) 

 

���(�� , �) = �*�                                                (16)      
��	"(#,�)

�� =
�!"(#,,�)&�'

(""                                    (17) 

S(0)=0                       (18) 

Where i=1 for tumor and 2 for lung. 

The energy balance on freezing interface in tumor 
is given by the equation 

DE�� F%
F�=��� ��""(%,�)

��  -Q                                  (19) 

and in lung 

GHE��D F%
F�=��� ��"(%,�)

��  -Q                     (20) 

Solving (15) using heat balance integral technique 

with a quadratic temperature profile 

��� = �*� + I�() − �) + J�() − �)�            (21) 

and applying the boundary conditions, we obtain 

I� = &�?""�""K((""/%)/%L(�(""/%)
�M""%(�(""/%)  + 

[(�?""�""K((""/%)&%L(�(""/%))/N�""?""O""PQ(RBASR')(T""UP)]

�M""%(�(""/%) , 
J� = V"L&V"M""

�?""�""K , 

I� = &�?"�"K ;(("/%)/%L(�("/%)
�M"%(�("/%)  + 

[(&�?"�" ;K(("/%)&%L(�("/%))/N�"?"O"W;Q(RBASR')(T"UP)]

�M"%(�("/%)
and J� = VL&VM"

�?"�"K ;  

the second time period for tumor and lung are 

obtained by using (21) in (19) and (20) 
respectively and are given by 

  �(�)�=X �""Q
V"M""&L Y�%

#                                        (22) 

and 

 �(�)� =X �"Q ;
V"M"&L Y�%

#                                        (23) 

Case II: 
In this case we consider the tumor embedded in 

healthy lung tissue. The temperature profile and 

time period for tumor in same as described in case 
first together with the condition that interface 

position S<L(length of tumor). But for the 

situation S≥L the statement of the problem is as 
follows  

��	"
�� =��� ��	"

��  ,   0<x<��,   S≥L                         (24) 

Boundary conditions are  

���(�, �) = �*�                                                  (25)      

���(Z, �) = ���(Z, �)                                         (26) 
��"([,�)

�� =��� ��""([,�)
��                                      (27) 
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��� ��""(#,�)
�� = ℎ[���(0, �) − �]]                       (28) 

��� ��"(%,�)
�� =E��DGH F%

F�  +Q                              (29) 

Solving equation (24) along with the boundary 
conditions (25) to (29), we get 

��� = �̂ + _�� + �
M[I` + 2J`(Z − �)]            (30) 

��� = �*� + I`() − �) + J`() − �)�              (31) 

where 

 I` = &�?"�"K ;((""/[/%M&[M)
M"([&%)(�(""/�[/%M&[M) -

L
�M"+ 

�
�M" [{&�?"�"K ;((""/[/%M&[M)

M"([&%)(�(""/�[/%M&[M) }�-

{NM"?"�"K ;(�BA&�')
([&%)(�(""/�[/%M&[M)}�/� 

J`=
Me�BA&�'f&Vg((""/[/%M&[M)

([&%)(�(""/�[/%M&[M)  

K=
M""
M" 

The interface velocity in the lung is given by 
F%
F�=

M"Vg&L
�"K ;                                    (32) 

and time  t=E��DGH X F%
M"(�'/("")/"

O [Vg/��g([&%)
%

[     (33) 

IV. RESULTS AND DISCUSSION  
With the help of Matlab, graphical representation 

for the above  analytical results are plotted from 

Fig. 1-2. The thermal constants used in the model 
are similar to Bischof et al. [1] and Comini and 

Giudice [5]. It is observed that freezing starts in 

tumor tissue after 70 seconds and after 4 seconds 

in healthy lung tissue respectively after the 
insertion of  cryoprobe. While in some models, for 

example Bischof et al. [1] suggested that freezing 

starts as soon as the cryoprobe was inserted in the 
tissue. This difference is due to the reason that 

they did not consider first time period which is 

taken in this model. It is also observed that frozen 

time of a tumor tissue is much larger than that of 
the  frozen time of a lung tissue of same length. 

Cooper and Trezek [3] had shown that when a 

cryoprobe with surface temperature minus 125 
degree Celsius was embedded in brain tissue at an 

initial temperature of 37 degree Celsius, the total 

lesion size of 0.864 cm was formed in about 441 
seconds.  

Bischof et al. [1] predicted  that a tumor of 1.0 cm 

long in lung was frozen in about 220 seconds. 

From  figure 1  the position of freezing interface 
for tumors of length 1.0 cm  embedded in the lung 

is shown.   

It is observed that the frozen time for  tumors are 

452.48 seconds (for length 0.864 cm) and 515.64 
seconds (for length 1.0 cm) respectively. 

 

Fig. 1. Freezing interface in a tumor embedded in 

the lung, L=1.0 cm. 

 

Fig. 2. Freezing interface in lung after crossing 

tumor lung boundary. 
Thus   it is clear that the results obtained from this 

model are very much close to the experimental 

results  of Cooper and Petrovie [2]. It is clear from 

the figure 1  that the freezing interface moves very 
fast in the lung after crossing tumor lung 

boundary. 

 It can be seen from figure 1 that the frozen time 
for a lung tissue of size 1.0 cm is 11.6 seconds 

while in tumor of same size, the frozen time is 

515.64 seconds.  
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V. CONCLUSION  

It is observed that as the freezing interface crosses 
to tumor-lung boundary and enters in the lung, it 

moves very fast (Fig. 2). Therefore it is essential 

to save the healthy living tissues of lung around 

the tumor one has to consider the first time period  
and  cryoprobe should be removed after the 

completion of second time period. The model 

presented in this paper can be used to predict the 
accurate position of freezing interface in a tumor 

embedded in the lung.                                                                            
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